Save up to 59.4% on GPU energy costs with quantum-inspired ring pattern optimization.
# Basic installation pip install ringtheory # With GPU support (PyTorch) pip install ringtheory[gpu] # For full features pip install ringtheory[full]
import torch
from ringtheory import GPURingOptimizer
# Initialize optimizer
optimizer = GPURingOptimizer(
device="cuda:0",
target_coherence=0.95,
precision_mode="high"
)
# Large matrix multiplication
A = torch.randn(4096, 4096, device="cuda")
B = torch.randn(4096, 4096, device="cuda")
# Standard PyTorch
result_std = torch.matmul(A, B)
# RingTheory optimized
result_opt = optimizer.optimize_matmul(A, B)
# Accuracy check
error = torch.max(torch.abs(result_std - result_opt)).item()
print(f"Max error: {error:.2e}") # Typically < 1e-10
print("Energy saved: ~59.4%")
import torch
import torch.nn as nn
import torch.optim as optim
from ringtheory import GPURingOptimizer
optimizer = GPURingOptimizer()
class SimpleNN(nn.Module):
def __init__(self):
super().__init__()
self.fc1 = nn.Linear(1024, 512)
self.fc2 = nn.Linear(512, 256)
self.fc3 = nn.Linear(256, 10)
def forward(self, x):
x = torch.relu(self.fc1(x))
x = torch.relu(self.fc2(x))
return self.fc3(x)
model = SimpleNN().cuda()
criterion = nn.CrossEntropyLoss()
train_optimizer = optim.Adam(model.parameters(), lr=0.001)
for epoch in range(10):
for batch_x, batch_y in dataloader:
batch_x, batch_y = batch_x.cuda(), batch_y.cuda()
outputs = optimizer.optimize_tensor_operation(
model,
batch_x,
operation="forward"
)
loss = criterion(outputs, batch_y)
loss.backward()
train_optimizer.step()
train_optimizer.zero_grad()
print(f"Epoch {epoch + 1}: Loss = {loss.item():.4f}")
print("Energy saved this epoch: ~17.6%")
import torch
import hashlib
import time
from ringtheory import GPURingOptimizer
optimizer = GPURingOptimizer(
device="cuda:0",
precision_mode="max_performance"
)
def mining_work(prefix):
data = torch.randn(1024, 1024, device="cuda")
result = optimizer.optimize_matmul(data, data.T)
hash_input = str(result.sum().item()) + prefix
return hashlib.sha256(hash_input.encode()).hexdigest()
difficulty = "0000"
prefix = "block_data_"
hash_count = 0
start_time = time.time()
print("⛏️ Starting optimized cryptocurrency mining...")
while True:
h = mining_work(prefix)
hash_count += 1
if h.startswith(difficulty):
print("✅ Block found!")
print(f"Hash: {h}")
print(f"Hashes: {hash_count}")
print(f"Time: {time.time() - start_time:.2f}s")
print("Energy saved vs standard mining: ~19.4%")
break
if hash_count % 1000 == 0:
rate = hash_count / (time.time() - start_time)
print(f"Hashrate: {rate:.0f} H/s | Total: {hash_count}")
import torch
import numpy as np
from ringtheory import GPURingOptimizer
optimizer = GPURingOptimizer(memory_safe=True)
def process_batch(batch_data):
tensor = torch.from_numpy(batch_data).float().cuda()
r1 = optimizer.optimize_matmul(tensor, tensor.T)
r2 = optimizer.optimize_tensor_operation(r1, operation="normalize")
r3 = optimizer.optimize_tensor_operation(r2, operation="compress")
return r3.cpu().numpy()
dataset = np.random.randn(10000, 1024).astype(np.float32)
batch_size = 256
print("Processing dataset...")
for i in range(0, len(dataset), batch_size):
batch = dataset[i:i + batch_size]
_ = process_batch(batch)
if i % (batch_size * 10) == 0:
print(f"Processed {i}/{len(dataset)} samples")
print("✅ Processing complete")
print("Total energy savings: ~28.0%")
RingTheory implements Self-Referential Autopattern Theory (SRAT / ТРАП) — a quantum-inspired approach that organizes GPU computations into resonant ring patterns, minimizing energy consumption while maintaining 100% numerical accuracy.
USDT (TRC-20):
TNSGpeVzNJcEA6MyXP9PmgmFaZk5zaascV
BTC:
1HzD6oHtoc1pYqJg2YLC92wXBu5taBX6jj
Send transaction ID to: vipvodu@yandex.ru
$7,345
$88,134
294,000 kg
vipvodu@yandex.ru
@vipvodu
RingTheory is commercial software.
Free usage allowed for:
Commercial usage requires a valid license.
© 2026 RingTheory Technologies. All rights reserved. Patent pending.