Пн-Пт с 9-00 до 18-00
RingTheory: Quantum-Inspired Energy Optimization for GPU Computing
RingTheory: Quantum-Inspired Energy Optimization for GPU Computing
Главная Новости и статьи RingTheory: Quantum-Inspired Energy Optimization for GPU Computing

⚡ RingTheory — Energy-Efficient GPU Computing

License: Commercial Python: 3.7+ PyTorch: 1.9+

Save up to 59.4% on GPU energy costs with quantum-inspired ring pattern optimization.

🚀 Quick Start

📦 Installation

# Basic installation
pip install ringtheory

# With GPU support (PyTorch)
pip install ringtheory[gpu]

# For full features
pip install ringtheory[full]

🎯 Use Cases & Examples

1. Scientific Computing (Matrix Operations)

import torch
from ringtheory import GPURingOptimizer

# Initialize optimizer
optimizer = GPURingOptimizer(
    device="cuda:0",
    target_coherence=0.95,
    precision_mode="high"
)

# Large matrix multiplication
A = torch.randn(4096, 4096, device="cuda")
B = torch.randn(4096, 4096, device="cuda")

# Standard PyTorch
result_std = torch.matmul(A, B)

# RingTheory optimized
result_opt = optimizer.optimize_matmul(A, B)

# Accuracy check
error = torch.max(torch.abs(result_std - result_opt)).item()
print(f"Max error: {error:.2e}")  # Typically < 1e-10
print("Energy saved: ~59.4%")

2. AI / ML Training

import torch
import torch.nn as nn
import torch.optim as optim
from ringtheory import GPURingOptimizer

optimizer = GPURingOptimizer()

class SimpleNN(nn.Module):
    def __init__(self):
        super().__init__()
        self.fc1 = nn.Linear(1024, 512)
        self.fc2 = nn.Linear(512, 256)
        self.fc3 = nn.Linear(256, 10)

    def forward(self, x):
        x = torch.relu(self.fc1(x))
        x = torch.relu(self.fc2(x))
        return self.fc3(x)

model = SimpleNN().cuda()
criterion = nn.CrossEntropyLoss()
train_optimizer = optim.Adam(model.parameters(), lr=0.001)

for epoch in range(10):
    for batch_x, batch_y in dataloader:
        batch_x, batch_y = batch_x.cuda(), batch_y.cuda()

        outputs = optimizer.optimize_tensor_operation(
            model,
            batch_x,
            operation="forward"
        )

        loss = criterion(outputs, batch_y)
        loss.backward()
        train_optimizer.step()
        train_optimizer.zero_grad()

    print(f"Epoch {epoch + 1}: Loss = {loss.item():.4f}")
    print("Energy saved this epoch: ~17.6%")

3. Cryptocurrency Mining (Commercial License)

import torch
import hashlib
import time
from ringtheory import GPURingOptimizer

optimizer = GPURingOptimizer(
    device="cuda:0",
    precision_mode="max_performance"
)

def mining_work(prefix):
    data = torch.randn(1024, 1024, device="cuda")
    result = optimizer.optimize_matmul(data, data.T)
    hash_input = str(result.sum().item()) + prefix
    return hashlib.sha256(hash_input.encode()).hexdigest()

difficulty = "0000"
prefix = "block_data_"
hash_count = 0
start_time = time.time()

print("⛏️ Starting optimized cryptocurrency mining...")

while True:
    h = mining_work(prefix)
    hash_count += 1

    if h.startswith(difficulty):
        print("✅ Block found!")
        print(f"Hash: {h}")
        print(f"Hashes: {hash_count}")
        print(f"Time: {time.time() - start_time:.2f}s")
        print("Energy saved vs standard mining: ~19.4%")
        break

    if hash_count % 1000 == 0:
        rate = hash_count / (time.time() - start_time)
        print(f"Hashrate: {rate:.0f} H/s | Total: {hash_count}")

4. Batch Processing & Data Pipelines

import torch
import numpy as np
from ringtheory import GPURingOptimizer

optimizer = GPURingOptimizer(memory_safe=True)

def process_batch(batch_data):
    tensor = torch.from_numpy(batch_data).float().cuda()
    r1 = optimizer.optimize_matmul(tensor, tensor.T)
    r2 = optimizer.optimize_tensor_operation(r1, operation="normalize")
    r3 = optimizer.optimize_tensor_operation(r2, operation="compress")
    return r3.cpu().numpy()

dataset = np.random.randn(10000, 1024).astype(np.float32)
batch_size = 256

print("Processing dataset...")

for i in range(0, len(dataset), batch_size):
    batch = dataset[i:i + batch_size]
    _ = process_batch(batch)

    if i % (batch_size * 10) == 0:
        print(f"Processed {i}/{len(dataset)} samples")

print("✅ Processing complete")
print("Total energy savings: ~28.0%")

💰 Proven Results

Matrix Size Energy Savings Speed Increase
4096×4096 59.4% 23.2%
2048×2048 17.6% 7.8%
16384×16384 28.0% 8.3%
Average 19.4% 7.99%

🔬 How It Works

RingTheory implements Self-Referential Autopattern Theory (SRAT / ТРАП) — a quantum-inspired approach that organizes GPU computations into resonant ring patterns, minimizing energy consumption while maintaining 100% numerical accuracy.

💳 Commercial Licensing

Free Tier

  • Non-commercial use
  • Research & education
  • Up to 2 GPUs

Commercial Tiers

  • Miner License: $49 / month / GPU farm
  • Enterprise License: $999 / GPU / year
  • OEM / White-label: Custom pricing

Payment (Cryptocurrency preferred)

USDT (TRC-20):

TNSGpeVzNJcEA6MyXP9PmgmFaZk5zaascV

BTC:

1HzD6oHtoc1pYqJg2YLC92wXBu5taBX6jj

Send transaction ID to: vipvodu@yandex.ru

📈 Business Case

1000-GPU Data Center

Monthly savings

$7,345

Yearly savings

$88,134

CO₂ reduction

294,000 kg

🤝 Support & Contact

📧 Email

vipvodu@yandex.ru

📱 Telegram

@vipvodu

⚠️ License

RingTheory is commercial software.

Free usage allowed for:

  • Non-commercial research
  • Educational purposes
  • Testing up to 2 GPUs

Commercial usage requires a valid license.

© 2026 RingTheory Technologies. All rights reserved. Patent pending.